Ryan Dickson Carnegie Mellon University May 31st, 2010

- The $f_{\scriptscriptstyle 1}(1285)$ & $\eta(1295)$ mesons
- Differential Cross Sections (preliminary)
- Dalitz Plot Analysis
- Branching Fractions
- Conclusions

- The $f_{\scriptscriptstyle 1}(1285)$ & $\eta(1295)$ mesons
- Differential Cross Sections
- Dalitz Plot Analysis
- Branching Fractions
- Conclusion and Remaining Work

• Great statistics in CLAS g11 data: ~1.5 x 10⁵ events in peak

05/31/10

WA102 Results (pp $\rightarrow p(\eta \pi \pi)p$)

- WA102 (CERN) central production data shows 1⁺⁺ with no 0⁻⁺ in ηππ
- Clear signal in the ρ⁰γ channel

$$\frac{\Gamma_{f,(\gamma\uparrow\wedge\circ)\to\rho\gamma}}{\Gamma_{f,(\gamma\uparrow\wedge\circ)\to\eta\pi\pi}} = \cdot \cdot \cdot \cdot \pm \cdot \cdot \cdot \pm \cdot \cdot \cdot$$

FIG. 3. $\eta \pi^+ \pi^-$ three-body mass distribution (not corrected for acceptance).

0

1.3

1.4

1.5

TABLE III. f_1 branching fractions. 3000 Events/30 WeV 2500 2500 2000 Events/30 MeV ++ 800 Decay mode PDG [7] KEK-E179 [9,10] BNL-E852 700 600 4π $35 \pm 4\%$ 65±4% 59±5% $7 \pm 3\%$ $16 \pm 5\%$ 50±18% 500 $n\pi\pi$ $\gamma \rho^0$ 5.4±1.2% $10 \pm 4\%$ $9 \pm 3\%$ 1500 400 9.6±1.2% $18 \pm 1\%$ 16±1% $KK\pi$ 300 1000 200 500 *No measurements of $\rho^0\gamma$ channel 100

0

1.3

1.4

1.5

Using CLAS to Determine f_1/η Properties

Decay Mode	Measurements
ηππ	$d\sigma/d\Omega$, mass, width,
	Branching Fraction
$a_0\pi \rightarrow \eta\pi\pi$	Dalitz plot analysis
ΚΚπ	$d\sigma/d\Omega$, Branching Fraction
$ ho^0\gamma$	Branching Fraction

CLAS at Jefferson Lab

CEBAF Large Acceptance Spectrometer – g11 run (2004)

Bremsstrahlung Photon Tagger (AE,/E, ~10⁻³)

- 5 x 10[^]7 tagged photons/sec _ 40 cm LH, target

Ap/p ~ 0.5-1 %
Large multi-particle

acceptance

2 charged track requirement in trigger

- The $f_1(1285) \& \eta(1295)$ mesons
- Differential Cross Sections
- Dalitz Plot Analysis
- Branching Fractions
- Conclusions

Event Selection

- Kinematic fit tracks to PID hypothesis
 - Eg. $\gamma p \rightarrow p \pi^+ \pi^-(\eta)$
- ∆TOF to reject false identities, duplicate events and events paired with incorrect photon.
- Fiducial cuts

Event Selection: Calibration through $\gamma p \rightarrow \eta' p$

- Acts as a reference reaction
- η' dσ/dΩ in ηππ & ρ⁰γ
 decay modes

Blue: this analysis ηππ
Red: this analysis ργ
Black: CLAS g11 (Williams, PRC 045213 (2009))

x(1280) yields: Two Methods

- Voigt + Polynomial fit
 - yields in $\eta\pi\pi$ and KK π
 - mass and Γ via $\eta \pi \pi$
- Monte Carlo signal and backgrounds fit
 - yields in $\eta\pi\pi$

Differential Cross Sections • $x \rightarrow \eta \pi \pi$ 20 W: 2.55 Ge 18 x(1280) CLAS g11 - methods 16 <mark>d</mark>ପ dΩ dΩ 14 combined 12 10 8 6 4 2 0 -0.5 0.5 0

 $\text{cos}\Theta_{v}^{\text{CM}}$

- The $f_1(1285) \& \eta(1295)$ mesons
- Differential Cross Sections
- Dalitz Plot Analysis
- Branching Fractions
- Conclusions

Dalitz Plot Analysis in $x \to \eta \pi \pi$

- A look at the structure of the $x \rightarrow \eta \pi \pi$ decay.
- Attempts to model the background were unsuccessful.
- Instead, we use sideband subtraction.

Sideband Scaling Method

Ryan Dickson - Carnegie Mellon

Ryan Dickson - Carnegie Mellon

Ryan Dickson - Carnegie Mellon

Dalitz Analysis Results

- Profile of a₀ bands consistent with coherent sum of Breit-Wigners
 - $-a_0^+$ slightly stronger (~52%)
- Negligible non-resonant component
 - Difficult to quantify, as background subtraction is dominant contribution to errors

- The $f_1(1285) \& \eta(1295)$ mesons
- Differential Cross Sections
- Dalitz Plot Analysis
- Branching Fractions
- Conclusions

Branching Fractions

Measure <u>relative</u> branching fractions

$$\frac{\Gamma_{x(1280)\to KK\pi}}{\Gamma_{x(1280)\to\eta\pi\pi}}$$

$$\frac{\Gamma_{x(1280)\to\rho\gamma}}{\Gamma_{x(1280)\to\eta\pi\pi}}$$

Branching Fractions

Measure relative branching fractions

 $\frac{\Gamma_{x(1280)\to KK\pi}}{\Gamma_{x(1280)\to\eta\pi\pi}}$ $\frac{\Gamma_{x(1280)\to\rho\gamma}}{\Gamma_{x(1280)\to\eta\pi\pi}}$

• Yields easily computed

- Now look for $\rho^0\gamma$
 - Expect ~10% of $\eta\pi\pi$ strength
 - Difficult to separate from $\gamma p \rightarrow p \pi^+ \pi^-$ and $\gamma p \rightarrow p \pi^+ \pi^- \pi^0$

Ryan Dickson - Carnegie Mellon

Preliminary Branching Fractions

step	value	stat. error	syst. error	PDG $f_1(1285)$
$\rho^0 \gamma$ Yield	3790	789	35~%	
$ ho^0\gamma$ Acceptance	0.0298	0.00006		
$K^{\pm}K^0\pi^{\mp}$ Yield	7170	436	4.7%	
$K^{\pm}K^0\pi^{\mp}$ Acceptance	0.0149	0.00003		
$\eta \pi^+ \pi^-$ Yield	151000	3590	19.8%	
$\eta \pi^+ \pi^-$ Acceptance	0.0701	0.0001		
B.R. $\left(\frac{x \rightarrow \rho^0 \gamma}{x \rightarrow \eta \pi^+ \pi^-}\right)$	0.059	0.0124	0.0237	0.127 ± 0.014
$B.R.(\frac{x \rightarrow K^{\pm} K^{0} \pi^{\mp}}{x \rightarrow \eta \pi^{+} \pi^{-}})$	0.187	0.0001	0.046	0.170 ± 0.012

Conclusions

- First photoproduction measurements of x(1280), seen in several decay channels.
 - η' mass and cross sections used to calibrate methods.
- Mass and width of the state are more consistent with the PDG values for $f_1(1285)$ than for $\eta(1295)$.
- Dalitz plot analysis of $\eta \pi \pi$ final state shows dominance of $a_0(980)\pi$ decay mode.
- Branching Ratio measurements for KK $\pi/\eta\pi\pi$ and $\rho\gamma/\eta\pi\pi$ consistent with PDG f₁(1285).

Backup Slides

Method 1: Voigt + Polynomial

- Voigtian Lineshape works well to extract yield.
 - Fit our x(1280) Monte Carlo to determines this σ in each kinematic bin.
 - Fix this parameter in our data fits.
- Mass and width are free parameters in bins with good statistics and favorable background.

Method 2: MC Signal + Bkgd

- Chosen smoothed background distributions were fit in conjunction with $x(1280) \rightarrow \eta \pi \pi$ MC spectra.
- Yields are the integrated MC scaled by the fit coefficient from each bin

Method 2: MC Signal + Bkgd

- Several channels processed to model the background shape seen in data.
 - ρππππ
 - ρρππ
 - $\Delta^{++}\pi^{-}\pi\pi$, $\Delta^{+}\pi^{0}\pi\pi$, $\Delta^{0}\pi^{+}\pi\pi$
 - p f₀(1370)
- Four pion final states populate kinematic space of our data.
- Chosen distributions were smoothed and fit in conjunction with x(1280) $\to \eta\pi\pi$ MC spectra

Method 2: MC Signal + Bkgd

- Several channels processed to model the background shape seen in data.
 - ρππππ
 - ρρππ
 - $\Delta^{++}\pi^{-}\pi\pi$, $\Delta^{+}\pi^{0}\pi\pi$, $\Delta^{0}\pi^{+}\pi\pi$
 - p f₀(1370)
- Four pion final states populate kinematic space of our data.
- Chosen distributions were smoothed and fit in conjunction with x(1280) $\to \eta\pi\pi$ MC spectra

Ryan Dickson - Carnegie Mellon

37

Sideband scaling Method

 $M \to m_i m_j m_k$

 $m_{ij}^{\prime 2} = f(M, M', m_{ij}, m_k)$ $m_{ij}^{2 \min} = (m_i + m_j)^2$ $m_{ij}^{2 \max} = (M - m_k)^2$ $r(M, m_{ij}, m_k) = m_{ij}^{2 \max} - m_{ij}^{2 \min}$ $m_{ij}^{\prime 2} = \frac{r(M, m_{ij}, m_k)}{r(M', m_{ij}, m_k)} (m_{ij}^2 - m_{ij}^{2 \min}) + m_{ij}^{2 \min}$

Systematic Test of Fits versus W

Ryan Dickson - Carnegie Mellon

Ryan Dickson - Carnegie Mellon

Dalitz Plot Systematics

- Fitting slices shows no apparent bias from our scaling function.
- Still working on quantifying the systematic error from this method

$\rho^0\gamma$ decay mode, missing?

Ryan Dickson - Carnegie Mellon

$\gamma p \rightarrow p \pi \pi(\gamma)$ contains π^0 Background

Ryan Dickson - Carnegie Mellon

Remove π^0 via Kinematic Fit < 0.01 CL

Ryan Dickson - Carnegie Mellon

$KK\pi$ PID and method.

- Kaon identification requires tighter ∆TOF cuts of +/-0.5 ns.
- Statistics were still limited with the $K^+K^-\pi^0$ channel invisible in our binning.
 - $K^+K^0\pi^-$ and $K^-K^0\pi^+$ channels combined and fit using voigtian with mass and width fixed from $\eta\pi^+\pi^-$ mode results.
 - Finally both the KK π and $\eta \pi^+\pi^-$ yields were scaled by the appropriate isospin Clebsch-Gordon values to account for the missing K⁺K⁻ π^0 and $\eta \pi^0 \pi^0$ channels.

Corrections & Cuts of Data and Monte Carlo

- Tagger Photon Energy Corrections
- Drift Chamber Momentum Corrections
- CMU studies (need better heading here)
 - Monte Carlo trigger efficiency
 - MC momentum smearing (instead of gpp)
 - MC scaling (throw away events where GSIM is still 'too efficient' compared to data)
 - TOF Paddle and fiducial cuts as well of course

Ryan Dickson - Carnegie Mellon